skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ignacio, Paulo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The think-aloud protocol provides researchers an insight into the designer's mental state, but little is understood about how thinking aloud influences design. The study presented in this paper sets out to measure the cognitive and neurocognitive changes in designers when thinking aloud. Engineering students (n=50) were randomly assigned to the think-aloud or control group. Students were outfitted with a functional near-infrared spectroscopy band. Students were asked to design a personal entertainment system. The think-aloud group spent significantly less time designing. Their design sketches included significantly fewer words. The think-aloud group also required significantly more resources in the left and right dorsolateral prefrontal cortex (DLPFC). The left DLPFC is often recruited for language processing, and the right DLPFC is involved in visual representation and problem-solving. The faster depletion of neurocognitive resources may have contributed to less time designing. Thinking aloud influences design cognition and neurocognition, but these effects are only now becoming apparent. More research and the adoption of neuroscience techniques can help shed light on these differences. 
    more » « less
  2. Jazizadeh, F.; Shealy, T.; Garvin, M. (Ed.)
    Challenges associated with the design and construction of the built environment are complex. Students need training to help them deal with this complexity and to help them explore and reframe problems early during project planning and design. Concept maps provide a visual representation of complex information and the relationships between this information. The research presented in this paper tested whether priming students to think in systems by asking them to draw concept maps changes how they construct problem statements. In total, 40 engineering students participated in the study. Half were asked to draw a concept map before constructing a problem statement about how to improve mobility systems around campus. The cognitive effort (i.e., time and words) students spent on the task and the number of unique system elements included in their problem statement were measured. Students that received the concept mapping intervention spent significantly more time thinking about the problem, developed longer problem statements, and included more unique elements of systems. These findings suggest using concept mapping can aid students’ conceptualization of complex problems. 
    more » « less